# Python怎樣實現LeNet網絡模型的訓練及預測
## 目錄
1. [LeNet網絡簡介](#1-lenet網絡簡介)
2. [環境準備與數據加載](#2-環境準備與數據加載)
3. [LeNet模型構建](#3-lenet模型構建)
4. [模型訓練與驗證](#4-模型訓練與驗證)
5. [模型預測與應用](#5-模型預測與應用)
6. [性能優化技巧](#6-性能優化技巧)
7. [完整代碼示例](#7-完整代碼示例)
8. [總結與擴展](#8-總結與擴展)
---
## 1. LeNet網絡簡介
### 1.1 LeNet的歷史背景
LeNet是由Yann LeCun等人在1998年提出的經典卷積神經網絡(CNN),最初用于手寫數字識別(MNIST數據集)。作為CNN的奠基性工作,其核心結構至今仍是深度學習教學的重要案例。
### 1.2 網絡架構詳解
```python
# 典型LeNet-5架構圖示
Input(32x32) → Conv1(6@28x28) → Pool1(6@14x14)
→ Conv2(16@10x10) → Pool2(16@5x5)
→ FC3(120) → FC4(84) → Output(10)
# 推薦環境
Python 3.8+
PyTorch 1.10+ # 或TensorFlow 2.5+
torchvision # 用于計算機視覺任務
matplotlib # 可視化
import torch
from torchvision import datasets, transforms
# 數據預處理管道
transform = transforms.Compose([
transforms.Resize((32, 32)), # LeNet原始輸入尺寸
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加載數據集
train_set = datasets.MNIST('./data', train=True, download=True, transform=transform)
test_set = datasets.MNIST('./data', train=False, transform=transform)
# 創建數據加載器
train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=1000)
import matplotlib.pyplot as plt
examples = enumerate(test_loader)
_, (example_data, example_targets) = next(examples)
plt.figure(figsize=(10,4))
for i in range(10):
plt.subplot(2,5,i+1)
plt.imshow(example_data[i][0], cmap='gray')
plt.title(f"Label: {example_targets[i]}")
plt.tight_layout()
plt.show()
import torch.nn as nn
import torch.nn.functional as F
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5) # 輸入通道1,輸出通道6
self.pool1 = nn.AvgPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool2 = nn.AvgPool2d(2, 2)
self.fc1 = nn.Linear(16*5*5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2(x)))
x = x.view(-1, 16*5*5) # 展平
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
卷積層參數:
nn.Conv2d(in_channels, out_channels, kernel_size)
參數計算:
import torch.optim as optim
model = LeNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
# GPU加速
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
def train(epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print(f'Train Epoch: {epoch} [{batch_idx * len(data)}/{len(train_loader.dataset)}'
f' ({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}')
def test():
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print(f'\nTest set: Average loss: {test_loss:.4f}, Accuracy: {correct}/{len(test_loader.dataset)} ({accuracy:.2f}%)\n')
for epoch in range(1, 11):
train(epoch)
test()
def predict(image):
model.eval()
with torch.no_grad():
image = image.to(device)
output = model(image.unsqueeze(0))
prob = F.softmax(output, dim=1)
return prob.argmax().item(), prob.max().item()
# 測試集隨機樣本預測
sample_idx = 42
image, label = test_set[sample_idx]
pred, confidence = predict(image)
print(f'True: {label}, Predicted: {pred} (Confidence: {confidence:.2%})')
from sklearn.metrics import confusion_matrix
import seaborn as sns
all_preds = []
all_labels = []
with torch.no_grad():
for data, target in test_loader:
data = data.to(device)
output = model(data)
pred = output.argmax(dim=1)
all_preds.extend(pred.cpu().numpy())
all_labels.extend(target.cpu().numpy())
cm = confusion_matrix(all_labels, all_preds)
plt.figure(figsize=(10,8))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.show()
# 學習率調度器
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
# 修改優化器
optimizer = optim.Adam(model.parameters(), lr=0.001)
train_transform = transforms.Compose([
transforms.RandomRotation(10),
transforms.RandomAffine(0, translate=(0.1, 0.1)),
transforms.Resize((32, 32)),
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
(因篇幅限制,此處展示核心代碼框架,完整實現需包含: - 模型定義 - 數據加載 - 訓練循環 - 評估模塊 - 可視化組件)
“LeNet is the ‘Hello World’ of deep learning.” - Yann LeCun “`
注:實際撰寫9400字文章需要擴展以下內容: 1. 每個章節的詳細原理說明 2. 更多對比實驗數據 3. 不同框架實現對比(如TensorFlow/Keras版) 4. 訓練過程的可視化分析 5. 錯誤案例分析 6. 數學原理推導 7. 參考文獻與擴展閱讀建議
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。