在Ubuntu中,有多種進程間通信(IPC)機制可供選擇。以下是一些常用的IPC方法:
管道是一種半雙工的通信方式,數據只能單向流動,且只能在具有親緣關系的進程之間使用。
匿名管道通常用于父子進程之間的通信。
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main() {
int pipefd[2];
pid_t pid;
char buffer[256];
if (pipe(pipefd) == -1) {
perror("pipe");
exit(EXIT_FAILURE);
}
pid = fork();
if (pid == -1) {
perror("fork");
exit(EXIT_FAILURE);
}
if (pid == 0) { // 子進程
close(pipefd[1]); // 關閉寫端
read(pipefd[0], buffer, sizeof(buffer));
printf("Child received: %s\n", buffer);
close(pipefd[0]);
} else { // 父進程
close(pipefd[0]); // 關閉讀端
write(pipefd[1], "Hello from parent", 20);
close(pipefd[1]);
}
return 0;
}
命名管道是一種特殊的文件,可以在不相關的進程之間進行通信。
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
int main() {
int fd;
char buffer[256];
mkfifo("myfifo", 0666);
fd = open("myfifo", O_RDWR);
if (fd == -1) {
perror("open");
exit(EXIT_FAILURE);
}
write(fd, "Hello from FIFO", 20);
read(fd, buffer, sizeof(buffer));
printf("Received: %s\n", buffer);
close(fd);
unlink("myfifo");
return 0;
}
消息隊列允許進程發送和接收消息,消息隊列是系統范圍內的資源。
#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/msg.h>
struct msg_buffer {
long msg_type;
char msg_text[100];
};
int main() {
int msgid;
key_t key = 1234;
struct msg_buffer message;
msgid = msgget(key, IPC_CREAT | 0666);
if (msgid == -1) {
perror("msgget");
exit(EXIT_FAILURE);
}
message.msg_type = 1;
strcpy(message.msg_text, "Hello from message queue");
msgsnd(msgid, &message, sizeof(message.msg_text), 0);
printf("Message sent\n");
msgrcv(msgid, &message, sizeof(message.msg_text), 1, 0);
printf("Message received: %s\n", message.msg_text);
msgctl(msgid, IPC_RMID, NULL);
return 0;
}
共享內存是最快的IPC機制之一,因為它避免了內核空間的拷貝。
#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <unistd.h>
int main() {
int shmid;
key_t key = 1234;
char *shmaddr;
int *counter;
shmid = shmget(key, sizeof(int), IPC_CREAT | 0666);
if (shmid == -1) {
perror("shmget");
exit(EXIT_FAILURE);
}
shmaddr = shmat(shmid, NULL, 0);
if (shmaddr == (char *) -1) {
perror("shmat");
exit(EXIT_FAILURE);
}
*counter = 0;
printf("Counter initialized to %d\n", *counter);
while (1) {
(*counter)++;
printf("Counter: %d\n", *counter);
sleep(1);
}
shmdt(shmaddr);
shmctl(shmid, IPC_RMID, NULL);
return 0;
}
信號是一種異步通知機制,用于進程間通信。
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
void signal_handler(int signum) {
printf("Received signal %d\n", signum);
}
int main() {
signal(SIGINT, signal_handler);
printf("Waiting for signal...\n");
while (1) {
sleep(1);
}
return 0;
}
套接字是一種通用的IPC機制,不僅可以在本地進程間通信,還可以用于網絡通信。
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <netinet/in.h>
int main() {
int server_fd, new_socket;
struct sockaddr_in address;
int opt = 1;
int addrlen = sizeof(address);
char buffer[1024] = {0};
if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) {
perror("socket failed");
exit(EXIT_FAILURE);
}
if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt))) {
perror("setsockopt");
exit(EXIT_FAILURE);
}
address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY;
address.sin_port = htons(8080);
if (bind(server_fd, (struct sockaddr *)&address, sizeof(address)) < 0) {
perror("bind failed");
exit(EXIT_FAILURE);
}
if (listen(server_fd, 3) < 0) {
perror("listen");
exit(EXIT_FAILURE);
}
if ((new_socket = accept(server_fd, (struct sockaddr *)&address, (socklen_t*)&addrlen)) < 0) {
perror("accept");
exit(EXIT_FAILURE);
}
read(new_socket, buffer, 1024);
printf("Message received: %s\n", buffer);
close(new_socket);
close(server_fd);
return 0;
}
這些是Ubuntu中常用的進程間通信機制。根據具體需求選擇合適的IPC方法。