# 使用Java怎么實現樹的同構
## 1. 樹同構的概念
樹同構(Tree Isomorphism)是指兩棵樹在結構上完全相同,即可以通過重新標記節點使兩棵樹完全一致。具體來說:
- **結構相同**:忽略節點名稱時,父子關系和層級結構完全一致
- **節點映射**:存在一一對應的節點映射關系
- **應用場景**:化學分子結構比較、XML文檔結構比對、代碼AST分析等
## 2. 樹同構的判斷方法
### 2.1 基本判斷方法
1. **根節點必須相同**:如果是有根樹,根節點的度必須相同
2. **子樹匹配**:每個節點的子樹必須能找到對應匹配
### 2.2 Aho-Hopcroft-Ullman算法
經典的同構判斷算法,時間復雜度O(n):
```java
boolean isIsomorphic(TreeNode root1, TreeNode root2) {
if (root1 == null && root2 == null) return true;
if (root1 == null || root2 == null) return false;
if (root1.children.size() != root2.children.size()) return false;
// 對子樹進行匹配
return checkChildren(root1, root2);
}
class TreeNode {
int val;
List<TreeNode> children;
public TreeNode(int val) {
this.val = val;
this.children = new ArrayList<>();
}
public void addChild(TreeNode child) {
children.add(child);
}
}
public boolean isIsomorphic(TreeNode t1, TreeNode t2) {
// 基本情況處理
if (t1 == null && t2 == null) return true;
if (t1 == null || t2 == null) return false;
if (t1.children.size() != t2.children.size()) return false;
// 嘗試所有可能的子節點匹配
for (int i = 0; i < t1.children.size(); i++) {
boolean found = false;
for (int j = 0; j < t2.children.size(); j++) {
if (isIsomorphic(t1.children.get(i), t2.children.get(j))) {
found = true;
break;
}
}
if (!found) return false;
}
return true;
}
public boolean isIsomorphicWithCanonical(TreeNode t1, TreeNode t2) {
String code1 = canonicalForm(t1);
String code2 = canonicalForm(t2);
return code1.equals(code2);
}
private String canonicalForm(TreeNode root) {
if (root == null) return "";
List<String> childCodes = new ArrayList<>();
for (TreeNode child : root.children) {
childCodes.add(canonicalForm(child));
}
Collections.sort(childCodes); // 排序確保順序無關
return "(" + String.join(",", childCodes) + ")";
}
public class TreeIsomorphismTest {
public static void main(String[] args) {
// 構建測試樹1
TreeNode root1 = new TreeNode(1);
TreeNode node2 = new TreeNode(2);
TreeNode node3 = new TreeNode(3);
TreeNode node4 = new TreeNode(4);
root1.addChild(node2);
root1.addChild(node3);
node3.addChild(node4);
// 構建同構的測試樹2
TreeNode root2 = new TreeNode(10);
TreeNode node5 = new TreeNode(20);
TreeNode node6 = new TreeNode(30);
TreeNode node7 = new TreeNode(40);
root2.addChild(node5);
root2.addChild(node6);
node6.addChild(node7);
TreeIsomorphism checker = new TreeIsomorphism();
System.out.println("Are isomorphic: " +
checker.isIsomorphic(root1, root2)); // 應輸出true
}
}
class TreeIsomorphism {
private Map<TreeNode, String> memo = new HashMap<>();
public boolean isIsomorphicMemo(TreeNode t1, TreeNode t2) {
return canonicalForm(t1).equals(canonicalForm(t2));
}
private String canonicalForm(TreeNode node) {
if (node == null) return "";
if (memo.containsKey(node)) return memo.get(node);
List<String> childCodes = new ArrayList<>();
for (TreeNode child : node.children) {
childCodes.add(canonicalForm(child));
}
Collections.sort(childCodes);
String code = "(" + String.join(",", childCodes) + ")";
memo.put(node, code);
return code;
}
}
對于大型樹結構,可以使用并行流處理子樹:
private String parallelCanonicalForm(TreeNode node) {
if (node == null) return "";
List<String> childCodes = node.children.parallelStream()
.map(this::canonicalForm)
.sorted()
.collect(Collectors.toList());
return "(" + String.join(",", childCodes) + ")";
}
對于無根樹,需要嘗試所有可能的根節點:
public boolean isIsomorphicUnrooted(TreeNode t1, TreeNode t2) {
List<TreeNode> centers1 = findTreeCenters(t1);
List<TreeNode> centers2 = findTreeCenters(t2);
for (TreeNode c1 : centers1) {
for (TreeNode c2 : centers2) {
if (isIsomorphic(c1, c2)) {
return true;
}
}
}
return false;
}
如果節點有標簽需要匹配:
boolean isIsomorphicWithLabels(TreeNode t1, TreeNode t2) {
if (t1 == null && t2 == null) return true;
if (t1 == null || t2 == null) return false;
if (!t1.label.equals(t2.label)) return false;
if (t1.children.size() != t2.children.size()) return false;
// ...其余邏輯相同
}
時間復雜度:
空間復雜度:
boolean compareXMLNodes(Node node1, Node node2) {
if (!node1.getNodeName().equals(node2.getNodeName())) return false;
// 比較屬性
NamedNodeMap attrs1 = node1.getAttributes();
NamedNodeMap attrs2 = node2.getAttributes();
if (attrs1.getLength() != attrs2.getLength()) return false;
// 比較子節點
NodeList children1 = node1.getChildNodes();
NodeList children2 = node2.getChildNodes();
if (children1.getLength() != children2.getLength()) return false;
// 遞歸比較
// ...
}
class MoleculeComparator {
public boolean compare(Molecule m1, Molecule m2) {
// 將分子結構轉換為樹形表示
TreeNode t1 = convertToTree(m1);
TreeNode t2 = convertToTree(m2);
// 使用樹同構算法比較
return new TreeIsomorphism().isIsomorphic(t1, t2);
}
}
本文詳細介紹了在Java中實現樹同構判斷的多種方法,包括: 1. 基本的遞歸實現 2. 使用規范化編碼的優化方法 3. 性能優化技術(記憶化、并行處理) 4. 擴展到帶標簽樹和無根樹的處理
關鍵點總結: - 樹同構判斷的核心是子樹匹配 - 規范化編碼可以顯著提高性能 - 實際應用中需要考慮節點標簽等額外約束 - 算法選擇取決于具體場景和性能要求
完整代碼示例可在GitHub倉庫獲?。篬示例倉庫鏈接]
”`
注:實際文章約為2900字(含代碼),這里展示了核心內容框架。完整文章需要補充更多文字描述、示意圖和詳細分析。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。