二叉查找樹(Binary Search Tree),也稱有序二叉樹(ordered binary tree),排序二叉樹(sorted binary tree),是指一棵空樹或者具有下列性質的二叉樹:
1、每一個節點都有一個作為搜索依據的關鍵碼,所有節點的關鍵碼互不相同。
2、左子樹上所有節點的關鍵碼都小于跟節點的關鍵碼。
3、右子樹上所有節點的關鍵碼都大于跟節點的關鍵碼。
4、左右子樹都是二叉樹搜索樹。
#include <iostream>
using namespace std;
template <typename T>
struct TreeNode
{
T Data;
TreeNode<T> *left;
TreeNode<T> *right;
TreeNode<T> *parent;
TreeNode(T data)
:left(NULL)
,right(NULL)
,Data(data)
,parent(NULL)
{}
};
template <typename T>
class BStree
{
public:
BStree()
{}
~BStree()
{}
BStree(T *arr,size_t sz);
void Insert(T data)
{
TreeNode<T> *tmp = new TreeNode<T>(data);
InsertBStree(_root,tmp);
}
void Search(T data)
{
TreeNode<T> *tmp = new TreeNode<T>(data);
tmp = SearchBStree(_root,tmp);
if(tmp)
cout<<'Y'<<endl;
else
cout<<'N'<<endl;
}
void Min()
{
TreeNode<T>* node = MinBStree(_root);
cout<<node->Data<<endl;
}
void Max()
{
TreeNode<T>* node = MaxBStree(_root);
cout<<node->Data<<endl;
}
void MaxLeft()
{
TreeNode<T>* node = MaxLeftBStree(_root);
cout<<node->Data<<endl;
}
void MinRight()
{
TreeNode<T>* node = MinRightBStree(_root);
cout<<node->Data<<endl;
}
void PrevNode(T data)
{
TreeNode<T> *tmp = new TreeNode<T>(data);
tmp = SearchBStree(_root,tmp);
if (tmp)
tmp = prevBStree(tmp);
cout<<tmp->Data<<endl;
}
void PostNode(T data)
{
TreeNode<T> *tmp = new TreeNode<T>(data);
tmp = SearchBStree(_root,tmp);
if (tmp)
tmp = postBStree(tmp);
cout<<tmp->Data<<endl;
}
void DeleteNode(T data)
{
TreeNode<T> *tmp = new TreeNode<T>(data);
tmp = SearchBStree(_root,tmp);
if (tmp)
DeleteBStree(tmp);
}
void Destroy()
{
DestroyBStree(_root);
}
void Mid()
{
MidOrder(_root);
}
void MidOrder(TreeNode<T> *Root)
{
if(Root==NULL)
return;
MidOrder(Root->left);
cout<<Root->Data<<" ";
MidOrder(Root->right);
}
protected:
void InsertBStree(TreeNode<T> *root,TreeNode<T> *Node);
TreeNode<T>* SearchBStree(TreeNode<T> *Root,TreeNode<T> *Node);
TreeNode<T>* MinBStree(TreeNode<T>* Root);
TreeNode<T>* MaxBStree(TreeNode<T>* Root);
TreeNode<T>* MaxLeftBStree(TreeNode<T> *Root);
TreeNode<T>* MinRightBStree(TreeNode<T> *Root);
TreeNode<T>* prevBStree(TreeNode<T> *Node);
TreeNode<T>* postBStree(TreeNode<T> *Node);
void DeleteBStree(TreeNode<T> *Node);
void DestroyBStree(TreeNode<T> *Root);
private:
TreeNode<T> * _root;
};
template<typename T>
BStree<T>::BStree(T *arr,size_t sz)
{
_root = new TreeNode<T>(arr[0]);
for (int i = 1; i < sz; i++)
{
TreeNode<T> *tmp = new TreeNode<T>(arr[i]);
InsertBStree(_root,tmp);
}
}
template<typename T>
void BStree<T>::InsertBStree(TreeNode<T> *root,TreeNode<T> *Node)
{
if(root==NULL)
root=Node;
else
{
TreeNode<T> *cur=NULL;
while(root)
{
cur=root;
if(root->Data > Node->Data)
{
root=root->left;
}
else
{
root=root->right;
}
}
if(Node->Data > cur->Data)
{
cur->right=Node;
Node->parent = cur;
}
else
{
cur->left=Node;
Node->parent = cur;
}
}
}
template<typename T>
TreeNode<T>* BStree<T>::SearchBStree(TreeNode<T>* Root,TreeNode<T> *Node)
{
TreeNode<T> *cur=Root;
while(cur&&cur->Data!=Node->Data)
{
if(cur->Data>Node->Data)
{
cur=cur->left;
}
else
{
cur=cur->right;
}
}
if(cur)
return cur;
else
return NULL;
}
template<typename T>
TreeNode<T>* BStree<T>::MinBStree(TreeNode<T>* Root)
{
TreeNode<T>* cur=Root;
while(cur->left)
{
cur=cur->left;
}
return cur;
}
template<typename T>
TreeNode<T>* BStree<T>::MaxBStree(TreeNode<T>* Root)
{
TreeNode<T>* cur=Root;
while(cur->right)
{
cur=cur->right;
}
return cur;
}
template<typename T>
TreeNode<T>* BStree<T>::MaxLeftBStree(TreeNode<T> *Root)
{
if (Root->left == NULL)
return NULL;
TreeNode<T>* cur = Root->left;
while(cur->right)
{
cur = cur->right;
}
return cur;
}
template<typename T>
TreeNode<T>* BStree<T>::MinRightBStree(TreeNode<T> *Root)
{
if (Root->right == NULL)
return NULL;
TreeNode<T>* cur = Root->right;
while(cur->left)
{
cur = cur->left;
}
return cur;
}
template <typename T>
TreeNode<T>* BStree<T>::prevBStree(TreeNode<T> *Node)
{
if (Node->left)
return MaxLeftBStree(Node);
TreeNode<T> *P = Node->parent;
if (Node->left == NULL && Node == P->right)
{
return Node->parent;
}
while (P && Node == P->left)
{
Node = P;
P = P->parent;
}
return P;
}
template <typename T>
TreeNode<T>* BStree<T>::postBStree(TreeNode<T> *Node)
{
if (Node->right)
return MinRightBStree(Node);
TreeNode<T> *P = Node->parent;
if (Node->right == NULL && Node == P->left)
{
return Node->parent;
}
while (P && Node == P->right)
{
Node = P;
P = P->parent;
}
return P;
}
template <typename T>
void BStree<T>::DeleteBStree(TreeNode<T> *Node)
{
TreeNode<T> *cur = Node->parent;
if (Node->left == NULL && Node->right == NULL)
{
if(Node == cur->left)
{
delete Node;
cur->left = NULL;
}
else
{
delete Node;
cur->right = NULL;
}
}
else if(Node->left == NULL && Node->right)
{
TreeNode<T> *child = Node->right;
if(Node == cur->left)
{
delete Node;
cur->left = child;
}
else
{
delete Node;
cur->right = child;
}
}
else if(Node->right == NULL && Node->left)
{
TreeNode<T> *child = Node->left;
if(Node == cur->left)
{
delete Node;
cur->left = child;
}
else
{
delete Node;
cur->right = child;
}
}
else
{
TreeNode<T> *tmp = postBStree(Node);
Node->Data = tmp->Data;
DeleteBStree(tmp);
}
}
template <typename T>
void BStree<T>::DestroyBStree(TreeNode<T> *Root)
{
if(Root==NULL)
return;
if(Root->left)
DestroyBStree(Root->left);
if(Root->right)
DestroyBStree(Root->right);
delete Root;
Root = NULL;
}
void Test()
{
int arr[] = {5,3,4,1,7,8,2,6,0,9};
int sz = sizeof(arr)/sizeof(arr[0]);
BStree<int> BS(arr,sz);
/*BS.Mid();
BS.Insert(10);
BS.Mid();*/
/*BS.Max();
BS.Min();
BS.MaxLeft();
BS.MinRight();
BS.Search(6);*/
//BS.PrevNode(9);
//BS.PostNode(4);
BS.DeleteNode(5);
BS.Mid();
//BS.Destroy();
//BS.Mid();
}
int main()
{
Test();
return 0;
}免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。