這篇文章主要介紹了Java中二叉樹與N叉樹的示例分析,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。

解法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
StringBuffer sb = new StringBuffer();
List<String> list = new ArrayList<String>();
public List<String> binaryTreePaths(TreeNode root) {
method(root);
return list;
}
public void method(TreeNode root){
if(root==null) return;
int t = sb.length();
sb.append(root.val);
if(root.left==null&&root.right==null){
list.add(sb.toString());
}
sb.append("->");
method(root.left);
method(root.right);
sb.delete(t, sb.length());
}
}
解法
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int ans = 0;
public int sumOfLeftLeaves(TreeNode root) {
method(root,false);
return ans;
}
public void method(TreeNode root,boolean flag){
if(root==null) return;
if(root.left==null&&root.right==null&&flag){
ans+=root.val;
return;
}
method(root.left,true);
method(root.right,false);
}
}
解法
/*
// Definition for a Node.
class Node {
public int val;
public List<Node> children;
public Node() {}
public Node(int _val) {
val = _val;
}
public Node(int _val, List<Node> _children) {
val = _val;
children = _children;
}
};
*/
class Solution {
public int maxDepth(Node root) {
if(root==null){
return 0;
}
int maxChildDepth = 0;
for(int i = 0;i<root.children.size();i++){
int childDepth = maxDepth(root.children.get(i));
maxChildDepth = Math.max(maxChildDepth, childDepth);
}
return maxChildDepth+1;
}
}感謝你能夠認真閱讀完這篇文章,希望小編分享的“Java中二叉樹與N叉樹的示例分析”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。