用戶電影評分數據集下載
http://grouplens.org/datasets/movielens/
1) Item-Based,非個性化的,每個人看到的都一樣
2) User-Based,個性化的,每個人看到的不一樣
對用戶的行為分析得到用戶的喜好后,可以根據用戶的喜好計算相似用戶和物品,然后可以基于相似用戶或物品進行推薦。這就是協同過濾中的兩個分支了,基于用戶的和基于物品的協同過濾。
在計算用戶之間的相似度時,是將一個用戶對所有物品的偏好作為一個向量,而在計算物品之間的相似度時,是將所有用戶對某個物品的偏好作為一個向量。求出相似度后,接下來可以求相似鄰居了。
3)基于模型(ModelCF)
按照模型,可以分為:
1)最近鄰模型:基于距離的協同過濾算法
2)Latent Factor Mode(SVD):基于矩陣分解的模型
3)Graph:圖模型,社會網絡圖模型
適用場景
對于一個在線網站,用戶的數量往往超過物品的數量,同時物品數據相對穩定,因此計算物品的相似度不但
計算量小,同時不必頻繁更新。但是這種情況只適用于電子商務類型的網站,像新聞類,博客等這類網站的
系統推薦,情況往往是相反的,物品數量是海量的,而且頻繁更新。
r語言實現基于物品的協同過濾算法
#引用plyr包
library(plyr)
#讀取數據集
train<-read.table(file="C:/users/Administrator/Desktop/u.data",sep=" ")
train<-train[1:3]
names(train)<-c("user","item","pref")
#計算用戶列表方法
usersUnique<-function(){
users<-unique(train$user)
users[order(users)]
}
#計算商品列表方法
itemsUnique<-function(){
items<-unique(train$item)
items[order(items)]
}
# 用戶列表
users<-usersUnique()
# 商品列表
items<-itemsUnique()
#建立商品列表索引
index<-function(x) which(items %in% x)
data<-ddply(train,.(user,item,pref),summarize,idx=index(item))
#同現矩陣
cooccurrence<-function(data){
n<-length(items)
co<-matrix(rep(0,n*n),nrow=n)
for(u in users){
idx<-index(data$item[which(data$user==u)])
m<-merge(idx,idx)
for(i in 1:nrow(m)){
co[m$x[i],m$y[i]]=co[m$x[i],m$y[i]]+1
}
}
return(co)
}
#推薦算法
recommend<-function(udata=udata,co=coMatrix,num=0){
n<-length(items)
# all of pref
pref<-rep(0,n)
pref[udata$idx]<-udata$pref
# 用戶評分矩陣
userx<-matrix(pref,nrow=n)
# 同現矩陣*評分矩陣
r<-co %*% userx
# 推薦結果排序
# 把該用戶評分過的商品的推薦值設為0
r[udata$idx]<-0
idx<-order(r,decreasing=TRUE)
topn<-data.frame(user=rep(udata$user[1],length(idx)),item=items[idx],val=r[idx])
topn<-topn[which(topn$val>0),]
# 推薦結果取前num個
if(num>0){
topn<-head(topn,num)
}
#返回結果
return(topn)
}
#生成同現矩陣
co<-cooccurrence(data)
#計算推薦結果
recommendation<-data.frame()
for(i in 1:length(users)){
udata<-data[which(data$user==users[i]),]
recommendation<-rbind(recommendation,recommend(udata,co,0))
}mareduce 實現
參考文章:
http://www.cnblogs.com/anny-1980/articles/3519555.html
代碼下載
https://github.com/bsspirit/maven_hadoop_template/releases/tag/recommend
spark ALS實現
Spark mllib里用的是矩陣分解的協同過濾,不是UserBase也不是ItemBase。
參考文章:
http://www.mamicode.com/info-detail-865258.html
import org.apache.spark.SparkConf
import org.apache.spark.mllib.recommendation.{ALS, MatrixFactorizationModel, Rating}
import org.apache.spark.rdd._
import org.apache.spark.SparkContext
import scala.io.Source
object MovieLensALS {
def main(args:Array[String]) {
//設置運行環境
val sparkConf = new SparkConf().setAppName("MovieLensALS").setMaster("local[5]")
val sc = new SparkContext(sparkConf)
//裝載用戶評分,該評分由評分器生成(即生成文件personalRatings.txt)
val myRatings = loadRatings(args(1))
val myRatingsRDD = sc.parallelize(myRatings, 1)
//樣本數據目錄
val movielensHomeDir = args(0)
//裝載樣本評分數據,其中最后一列Timestamp取除10的余數作為key,Rating為值,即(Int,Rating)
val ratings = sc.textFile(movielensHomeDir + "/ratings.dat").map {
line =>
val fields = line.split("::")
// format: (timestamp % 10, Rating(userId, movieId, rating))
(fields(3).toLong % 10, Rating(fields(0).toInt, fields(1).toInt, fields(2).toDouble))
}
//裝載電影目錄對照表(電影ID->電影標題)
val movies = sc.textFile(movielensHomeDir + "/movies.dat").map {
line =>
val fields = line.split("::")
// format: (movieId, movieName)
(fields(0).toInt, fields(1))
}.collect().toMap
//統計有用戶數量和電影數量以及用戶對電影的評分數目
val numRatings = ratings.count()
val numUsers = ratings.map(_._2.user).distinct().count()
val numMovies = ratings.map(_._2.product).distinct().count()
println("Got " + numRatings + " ratings from " + numUsers + " users " + numMovies + " movies")
//將樣本評分表以key值切分成3個部分,分別用于訓練 (60%,并加入用戶評分), 校驗 (20%), and 測試 (20%)
//該數據在計算過程中要多次應用到,所以cache到內存
val numPartitions = 4
val training = ratings.filter(x => x._1 < 6).values.union(myRatingsRDD).repartition(numPartitions).persist()
val validation = ratings.filter(x => x._1 >= 6 && x._1 < 8).values.repartition(numPartitions).persist()
val test = ratings.filter(x => x._1 >= 8).values.persist()
val numTraining = training.count()
val numValidation = validation.count()
val numTest = test.count()
println("Training: " + numTraining + " validation: " + numValidation + " test: " + numTest)
//訓練不同參數下的模型,并在校驗集中驗證,獲取最佳參數下的模型
val ranks = List(8, 12)
val lambdas = List(0.1, 10.0)
val numIters = List(10, 20)
var bestModel: Option[MatrixFactorizationModel] = None
var bestValidationRmse = Double.MaxValue
var bestRank = 0
var bestLambda = -1.0
var bestNumIter = -1
for (rank <- ranks; lambda <- lambdas; numIter <- numIters) {
val model = ALS.train(training, rank, numIter, lambda)
val validationRmse = computeRmse(model, validation, numValidation)
println("RMSE(validation) = " + validationRmse + " for the model trained with rank = "
+ rank + ",lambda = " + lambda + ",and numIter = " + numIter + ".")
if (validationRmse < bestValidationRmse) {
bestModel = Some(model)
bestValidationRmse = validationRmse
bestRank = rank
bestLambda = lambda
bestNumIter = numIter
}
}
//用最佳模型預測測試集的評分,并計算和實際評分之間的均方根誤差(RMSE)
val testRmse = computeRmse(bestModel.get, test, numTest)
println("The best model was trained with rank = " + bestRank + " and lambda = " + bestLambda
+ ", and numIter = " + bestNumIter + ", and its RMSE on the test set is " + testRmse + ".")
//create a naive baseline and compare it with the best model
val meanRating = training.union(validation).map(_.rating).mean()
val baselineRmse = math.sqrt(test.map(x => (meanRating - x.rating) * (meanRating - x.rating)).reduce(_ + _) / numTest)
val improvement = (baselineRmse - testRmse) / baselineRmse * 100
println("The best model improves the baseline by " + "%1.2f".format(improvement) + "%.")
//推薦前十部最感興趣的電影,注意要剔除用戶已經評分的電影
val myRatedMovieIds = myRatings.map(_.product).toSet
val candidates = sc.parallelize(movies.keys.filter(!myRatedMovieIds.contains(_)).toSeq)
val recommendations = bestModel.get
.predict(candidates.map((0, _)))
.collect()
.sortBy(-_.rating)
.take(10)
var i = 1
println("Movies recommended for you:")
recommendations.foreach { r =>
println("%2d".format(i) + ": " + movies(r.product))
i += 1
}
sc.stop()
}
/** 校驗集預測數據和實際數據之間的均方根誤差 **/
def computeRmse(model:MatrixFactorizationModel,data:RDD[Rating],n:Long):Double = {
val predictions:RDD[Rating] = model.predict(data.map(x => (x.user,x.product)))
val predictionsAndRatings = predictions.map{ x =>((x.user,x.product),x.rating)}
.join(data.map(x => ((x.user,x.product),x.rating))).values
math.sqrt(predictionsAndRatings.map( x => (x._1 - x._2) * (x._1 - x._2)).reduce(_+_)/n)
}
/** 裝載用戶評分文件 personalRatings.txt **/
def loadRatings(path:String):Seq[Rating] = {
val lines = Source.fromFile(path).getLines()
val ratings = lines.map{
line =>
val fields = line.split("::")
Rating(fields(0).toInt,fields(1).toInt,fields(2).toDouble)
}.filter(_.rating > 0.0)
if(ratings.isEmpty){
sys.error("No ratings provided.")
}else{
ratings.toSeq
}
}
}參考文章:
http://blog.csdn.net/acdreamers/article/details/44672305
http://www.cnblogs.com/technology/p/4467895.html
http://blog.fens.me/rhadoop-mapreduce-rmr/
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。