溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Java NIO2 AIO開發核心流程是什么

發布時間:2022-01-14 20:14:25 來源:億速云 閱讀:198 作者:iii 欄目:編程語言

這篇文章主要講解了“Java NIO2 AIO開發核心流程是什么”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“Java NIO2 AIO開發核心流程是什么”吧!

按照《Unix網絡編程》的劃分,IO模型可以分為:阻塞IO、非阻塞IO、IO復用、信號驅動IO和異步IO,按照POSIX標準來劃分只分為兩類:同步IO和異步IO。如何區分呢?首先一個IO操作其實分成了兩個步驟:發起IO請求和實際的IO操作,同步IO和異步IO的區別就在于第二個步驟是否阻塞,如果實際的IO讀寫阻塞請求進程,那么就是同步IO,因此阻塞IO、非阻塞IO、IO服用、信號驅動IO都是同步IO,如果不阻塞,而是操作系統幫你做完IO操作再將結果返回給你,那么就是異步IO。阻塞IO和非阻塞IO的區別在于第一步,發起IO請求是否會被阻塞,如果阻塞直到完成那么就是傳統的阻塞IO,如果不阻塞,那么就是非阻塞IO。

Java nio 2.0的主要改進就是引入了異步IO(包括文件和網絡),這里主要介紹下異步網絡IO API的使用以及框架的設計,以TCP服務端為例。首先看下為了支持AIO引入的新的類和接口:

java.nio.channels.AsynchronousChannel

標記一個channel支持異步IO操作。

java.nio.channels.AsynchronousServerSocketChannel

ServerSocket的aio版本,創建TCP服務端,綁定地址,監聽端口等。

java.nio.channels.AsynchronousSocketChannel

面向流的異步socket channel,表示一個連接。

java.nio.channels.AsynchronousChannelGroup

異步channel的分組管理,目的是為了資源共享。一個AsynchronousChannelGroup綁定一個線程池,這個線程池執行兩個任務:處理IO事件和派發CompletionHandler。AsynchronousServerSocketChannel創建的時候可以傳入一個 AsynchronousChannelGroup,那么通過AsynchronousServerSocketChannel創建的 AsynchronousSocketChannel將同屬于一個組,共享資源。

java.nio.channels.CompletionHandler

異步IO操作結果的回調接口,用于定義在IO操作完成后所作的回調工作。AIO的API允許兩種方式來處理異步操作的結果:返回的Future模式或者注冊CompletionHandler,我更推薦用CompletionHandler的方式,這些handler的調用是由 AsynchronousChannelGroup的線程池派發的。顯然,線程池的大小是性能的關鍵因素。AsynchronousChannelGroup允許綁定不同的線程池,通過三個靜態方法來創建:

public static AsynchronousChannelGroup withFixedThreadPool(int nThreads,                                                                ThreadFactory threadFactory)         throws IOException   public static AsynchronousChannelGroup withCachedThreadPool(ExecutorService executor,                                                                 int initialSize)   public static AsynchronousChannelGroup withThreadPool(ExecutorService executor)         throws IOException

需要根據具體應用相應調整,從框架角度出發,需要暴露這樣的配置選項給用戶。

在介紹完了aio引入的TCP的主要接口和類之后,我們來設想下一個aio框架應該怎么設計。參考非阻塞nio框架的設計,一般都是采用Reactor模式,Reacot負責事件的注冊、select、事件的派發;相應地,異步IO有個Proactor模式,Proactor負責 CompletionHandler的派發,查看一個典型的IO寫操作的流程來看兩者的區別:

Reactor: send(msg) -> 消息隊列是否為空,如果為空 -> 向Reactor注冊OP_WRITE,然后返回 -> Reactor select -> 觸發Writable,通知用戶線程去處理 ->先注銷Writable(很多人遇到的cpu 100%的問題就在于沒有注銷),處理Writeable,如果沒有完全寫入,繼續注冊OP_WRITE。注意到,寫入的工作還是用戶線程在處理。

Proactor: send(msg) -> 消息隊列是否為空,如果為空,發起read異步調用,并注冊CompletionHandler,然后返回。 -> 操作系統負責將你的消息寫入,并返回結果(寫入的字節數)給Proactor -> Proactor派發CompletionHandler??梢?,寫入的工作是操作系統在處理,無需用戶線程參與。事實上在aio的API 中,AsynchronousChannelGroup就扮演了Proactor的角色。

CompletionHandler有三個方法,分別對應于處理成功、失敗、被取消(通過返回的Future)情況下的回調處理:

public interface CompletionHandler<V,A> {        void completed(V result, A attachment);       void failed(Throwable exc, A attachment);            void cancelled(A attachment);  }

其中的泛型參數V表示IO調用的結果,而A是發起調用時傳入的attchment。

在初步介紹完aio引入的類和接口后,我們看看一個典型的tcp服務端是怎么啟動的,怎么接受連接并處理讀和寫,這里引用的代碼都是yanf4j 的aio分支中的代碼,可以從svn checkout,svn地址: http://yanf4j.googlecode.com/svn/branches/yanf4j-aio

第一步,創建一個AsynchronousServerSocketChannel,創建之前先創建一個 AsynchronousChannelGroup,上文提到AsynchronousServerSocketChannel可以綁定一個 AsynchronousChannelGroup,那么通過這個AsynchronousServerSocketChannel建立的連接都將同屬于一個AsynchronousChannelGroup并共享資源:

this.asynchronousChannelGroup = AsynchronousChannelGroup                      .withCachedThreadPool(Executors.newCachedThreadPool(),                              this.threadPoolSize);

然后初始化一個AsynchronousServerSocketChannel,通過open方法:

this.serverSocketChannel = AsynchronousServerSocketChannel                  .open(this.asynchronousChannelGroup);

通過nio 2.0引入的SocketOption類設置一些TCP選項:

this.serverSocketChannel                      .setOption(                              StandardSocketOption.SO_REUSEADDR,true);  this.serverSocketChannel                      .setOption(                              StandardSocketOption.SO_RCVBUF,16*1024);

綁定本地地址:

this.serverSocketChannel                      .bind(new InetSocketAddress("localhost",8080), 100);

其中的100用于指定等待連接的隊列大小(backlog)。完了嗎?還沒有,最重要的監聽工作還沒開始,監聽端口是為了等待連接上來以便accept產生一個AsynchronousSocketChannel來表示一個新建立的連接,因此需要發起一個accept調用,調用是異步的,操作系統將在連接建立后,將最后的結果&mdash;&mdash;AsynchronousSocketChannel返回給你

public void pendingAccept() {          if (this.started && this.serverSocketChannel.isOpen()) {              this.acceptFuture = this.serverSocketChannel.accept(null,                      new AcceptCompletionHandler());           } else {              throw new IllegalStateException("Controller has been closed");          }      }

注意,重復的accept調用將會拋出PendingAcceptException,后文提到的read和write也是如此。accept方法的第一個參數是你想傳給CompletionHandler的attchment,第二個參數就是注冊的用于回調的CompletionHandler,最后返回結果Future<AsynchronousSocketChannel>。你可以對future做處理,這里采用更推薦的方式就是注冊一個CompletionHandler。那么accept的CompletionHandler中做些什么工作呢?顯然一個赤裸裸的 AsynchronousSocketChannel是不夠的,我們需要將它封裝成session,一個session表示一個連接(mina里就叫 IoSession了),里面帶了一個緩沖的消息隊列以及一些其他資源等。在連接建立后,除非你的服務器只準備接受一個連接,不然你需要在后面繼續調用pendingAccept來發起另一個accept請求:

private final class AcceptCompletionHandler implements             CompletionHandler<AsynchronousSocketChannel, Object> {           @Override         public void cancelled(Object attachment) {              logger.warn("Accept operation was canceled");          }           @Override         public void completed(AsynchronousSocketChannel socketChannel,                  Object attachment) {              try {                  logger.debug("Accept connection from "                         + socketChannel.getRemoteAddress());                  configureChannel(socketChannel);                  AioSessionConfig sessionConfig = buildSessionConfig(socketChannel);                  Session session = new AioTCPSession(sessionConfig,                          AioTCPController.this.configuration                                  .getSessionReadBufferSize(),                          AioTCPController.this.sessionTimeout);                  session.start();                  registerSession(session);              } catch (Exception e) {                  e.printStackTrace();                  logger.error("Accept error", e);                  notifyException(e);              } finally {                  <strong>pendingAccept</strong>();              }          }           @Override         public void failed(Throwable exc, Object attachment) {              logger.error("Accept error", exc);              try {                  notifyException(exc);              } finally {                  <strong>pendingAccept</strong>();              }          }      }

注意到了吧,我們在failed和completed方法中在最后都調用了pendingAccept來繼續發起accept調用,等待新的連接上來。有的同學可能要說了,這樣搞是不是遞歸調用,會不會堆棧溢出?實際上不會,因為發起accept調用的線程與CompletionHandler回調的線程并非同一個,不是一個上下文中,兩者之間沒有耦合關系。要注意到,CompletionHandler的回調共用的是 AsynchronousChannelGroup綁定的線程池,因此千萬別在CompletionHandler回調方法中調用阻塞或者長時間的操作,例如sleep,回調方法最好能支持超時,防止線程池耗盡。

連接建立后,怎么讀和寫呢?回憶下在nonblocking nio框架中,連接建立后的第一件事是干什么?注冊OP_READ事件等待socket可讀。異步IO也同樣如此,連接建立后馬上發起一個異步read調用,等待socket可讀,這個是Session.start方法中所做的事情:

public class AioTCPSession {      protected void start0() {          pendingRead();      }       protected final void pendingRead() {          if (!isClosed() && this.asynchronousSocketChannel.isOpen()) {              if (!this.readBuffer.hasRemaining()) {                  this.readBuffer = ByteBufferUtils                          .increaseBufferCapatity(this.readBuffer);              }              this.readFuture = this.asynchronousSocketChannel.read(                      this.readBuffer, this, this.readCompletionHandler);          } else {              throw new IllegalStateException(                      "Session Or Channel has been closed");          }      }       }

AsynchronousSocketChannel的read調用與AsynchronousServerSocketChannel的accept調用類似,同樣是非阻塞的,返回結果也是一個Future,但是寫的結果是整數,表示寫入了多少字節,因此read調用返回的是 Future<Integer>,方法的第一個參數是讀的緩沖區,操作系統將IO讀到數據拷貝到這個緩沖區,第二個參數是傳遞給 CompletionHandler的attchment,第三個參數就是注冊的用于回調的CompletionHandler。這里保存了read的結果Future,這是為了在關閉連接的時候能夠主動取消調用,accept也是如此?,F在可以看看read的CompletionHandler的實現:

public final class ReadCompletionHandler implements         CompletionHandler<Integer, AbstractAioSession> {       private static final Logger log = LoggerFactory              .getLogger(ReadCompletionHandler.class);      protected final AioTCPController controller;       public ReadCompletionHandler(AioTCPController controller) {          this.controller = controller;      }       @Override     public void cancelled(AbstractAioSession session) {          log.warn("Session(" + session.getRemoteSocketAddress()                  + ") read operation was canceled");      }       @Override     public void completed(Integer result, AbstractAioSession session) {          if (log.isDebugEnabled())              log.debug("Session(" + session.getRemoteSocketAddress()                      + ") read +" + result + " bytes");          if (result < 0) {              session.close();              return;          }          try {              if (result > 0) {                  session.updateTimeStamp();                  session.getReadBuffer().flip();                  session.decode();                  session.getReadBuffer().compact();              }          } finally {              try {                  session.pendingRead();              } catch (IOException e) {                  session.onException(e);                  session.close();              }          }          controller.checkSessionTimeout();      }       @Override     public void failed(Throwable exc, AbstractAioSession session) {          log.error("Session read error", exc);          session.onException(exc);          session.close();      }   }

如果IO讀失敗,會返回失敗產生的異常,這種情況下我們就主動關閉連接,通過session.close()方法,這個方法干了兩件事情:關閉channel和取消read調用:

if (null != this.readFuture) {              this.readFuture.cancel(true);          }  this.asynchronousSocketChannel.close();

在讀成功的情況下,我們還需要判斷結果result是否小于0,如果小于0就表示對端關閉了,這種情況下我們也主動關閉連接并返回。如果讀到一定字節,也就是result大于0的情況下,我們就嘗試從讀緩沖區中decode出消息,并派發給業務處理器的回調方法,最終通過pendingRead繼續發起read調用等待socket的下一次可讀??梢?,我們并不需要自己去調用channel來進行IO讀,而是操作系統幫你直接讀到了緩沖區,然后給你一個結果表示讀入了多少字節,你處理這個結果即可。而nonblocking IO框架中,是reactor通知用戶線程socket可讀了,然后用戶線程自己去調用read進行實際讀操作。這里還有個需要注意的地方,就是decode出來的消息的派發給業務處理器工作最好交給一個線程池來處理,避免阻塞group綁定的線程池。

IO寫的操作與此類似,不過通常寫的話我們會在session中關聯一個緩沖隊列來處理,沒有完全寫入或者等待寫入的消息都存放在隊列中,隊列為空的情況下發起write調用:

protected void write0(WriteMessage message) {        boolean needWrite = false;        synchronized (this.writeQueue) {            needWrite = this.writeQueue.isEmpty();            this.writeQueue.offer(message);        }        if (needWrite) {            pendingWrite(message);        }    }     protected final void pendingWrite(WriteMessage message) {        message = preprocessWriteMessage(message);        if (!isClosed() && this.asynchronousSocketChannel.isOpen()) {            this.asynchronousSocketChannel.write(message.getWriteBuffer(),                    this, this.writeCompletionHandler);        } else {            throw new IllegalStateException(                    "Session Or Channel has been closed");        }    }

write調用返回的結果與read一樣是一個Future<Integer>,而write的CompletionHandler處理的核心邏輯大概是這樣:

@Override     public void completed(Integer result, AbstractAioSession session) {          if (log.isDebugEnabled())              log.debug("Session(" + session.getRemoteSocketAddress()                      + ") writen " + result + " bytes");                            WriteMessage writeMessage;          Queue<WriteMessage> writeQueue = session.getWriteQueue();          synchronized (writeQueue) {              writeMessage = writeQueue.peek();              if (writeMessage.getWriteBuffer() == null                     || !writeMessage.getWriteBuffer().hasRemaining()) {                  writeQueue.remove();                  if (writeMessage.getWriteFuture() != null) {                      writeMessage.getWriteFuture().setResult(Boolean.TRUE);                  }                  try {                      session.getHandler().onMessageSent(session,                              writeMessage.getMessage());                  } catch (Exception e) {                      session.onException(e);                  }                  writeMessage = writeQueue.peek();              }          }          if (writeMessage != null) {              try {                  session.pendingWrite(writeMessage);              } catch (IOException e) {                  session.onException(e);                  session.close();              }          }      }

compete方法中的result就是實際寫入的字節數,然后我們判斷消息的緩沖區是否還有剩余,如果沒有就將消息從隊列中移除,如果隊列中還有消息,那么繼續發起write調用。

重復一下,這里引用的代碼都是yanf4j aio分支中的源碼,感興趣的朋友可以直接check out出來看看: http://yanf4j.googlecode.com/svn/branches/yanf4j-aio。

在引入了aio之后,java對于網絡層的支持已經非常完善,該有的都有了,java也已經成為服務器開發的首選語言之一。java的弱項在于對內存的管理上,由于這一切都交給了GC,因此在高性能的網絡服務器上還是Cpp的天下。java這種單一堆模型比之erlang的進程內堆模型還是有差距,很難做到高效的垃圾回收和細粒度的內存管理。

這里僅僅是介紹了aio開發的核心流程,對于一個網絡框架來說,還需要考慮超時的處理、緩沖buffer的處理、業務層和網絡層的切分、可擴展性、性能的可調性以及一定的通用性要求。

感謝各位的閱讀,以上就是“Java NIO2 AIO開發核心流程是什么”的內容了,經過本文的學習后,相信大家對Java NIO2 AIO開發核心流程是什么這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

亚洲午夜精品一区二区_中文无码日韩欧免_久久香蕉精品视频_欧美主播一区二区三区美女