這篇文章給大家分享的是有關PyTorch批訓練及優化器的示例分析的內容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。
一、PyTorch批訓練
1. 概述
PyTorch提供了一種將數據包裝起來進行批訓練的工具——DataLoader。使用的時候,只需要將我們的數據首先轉換為torch的tensor形式,再轉換成torch可以識別的Dataset格式,然后將Dataset放入DataLoader中就可以啦。
import torch
import torch.utils.data as Data
torch.manual_seed(1) # 設定隨機數種子
BATCH_SIZE = 5
x = torch.linspace(1, 10, 10)
y = torch.linspace(0.5, 5, 10)
# 將數據轉換為torch的dataset格式
torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y)
# 將torch_dataset置入Dataloader中
loader = Data.DataLoader(
dataset=torch_dataset,
batch_size=BATCH_SIZE, # 批大小
# 若dataset中的樣本數不能被batch_size整除的話,最后剩余多少就使用多少
shuffle=True, # 是否隨機打亂順序
num_workers=2, # 多線程讀取數據的線程數
)
for epoch in range(3):
for step, (batch_x, batch_y) in enumerate(loader):
print('Epoch:', epoch, '|Step:', step, '|batch_x:',
batch_x.numpy(), '|batch_y', batch_y.numpy())
'''''
shuffle=True
Epoch: 0 |Step: 0 |batch_x: [ 6. 7. 2. 3. 1.] |batch_y [ 3. 3.5 1. 1.5 0.5]
Epoch: 0 |Step: 1 |batch_x: [ 9. 10. 4. 8. 5.] |batch_y [ 4.5 5. 2. 4. 2.5]
Epoch: 1 |Step: 0 |batch_x: [ 3. 4. 2. 9. 10.] |batch_y [ 1.5 2. 1. 4.5 5. ]
Epoch: 1 |Step: 1 |batch_x: [ 1. 7. 8. 5. 6.] |batch_y [ 0.5 3.5 4. 2.5 3. ]
Epoch: 2 |Step: 0 |batch_x: [ 3. 9. 2. 6. 7.] |batch_y [ 1.5 4.5 1. 3. 3.5]
Epoch: 2 |Step: 1 |batch_x: [ 10. 4. 8. 1. 5.] |batch_y [ 5. 2. 4. 0.5 2.5]
shuffle=False
Epoch: 0 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5]
Epoch: 0 |Step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ]
Epoch: 1 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5]
Epoch: 1 |Step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ]
Epoch: 2 |Step: 0 |batch_x: [ 1. 2. 3. 4. 5.] |batch_y [ 0.5 1. 1.5 2. 2.5]
Epoch: 2 |Step: 1 |batch_x: [ 6. 7. 8. 9. 10.] |batch_y [ 3. 3.5 4. 4.5 5. ]
'''2. TensorDataset
classtorch.utils.data.TensorDataset(data_tensor, target_tensor)
TensorDataset類用來將樣本及其標簽打包成torch的Dataset,data_tensor,和target_tensor都是tensor。
3. DataLoader
復制代碼 代碼如下:
classtorch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, sampler=None,num_workers=0, collate_fn=<function default_collate>, pin_memory=False,drop_last=False)
dataset就是Torch的Dataset格式的對象;batch_size即每批訓練的樣本數量,默認為;shuffle表示是否需要隨機取樣本;num_workers表示讀取樣本的線程數。
二、PyTorch的Optimizer優化器
本實驗中,首先構造一組數據集,轉換格式并置于DataLoader中,備用。定義一個固定結構的默認神經網絡,然后為每個優化器構建一個神經網絡,每個神經網絡的區別僅僅是優化器不同。通過記錄訓練過程中的loss值,最后在圖像上呈現得到各個優化器的優化過程。
代碼實現:
import torch
import torch.utils.data as Data
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt
torch.manual_seed(1) # 設定隨機數種子
# 定義超參數
LR = 0.01 # 學習率
BATCH_SIZE = 32 # 批大小
EPOCH = 12 # 迭代次數
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
#plt.scatter(x.numpy(), y.numpy())
#plt.show()
# 將數據轉換為torch的dataset格式
torch_dataset = Data.TensorDataset(data_tensor=x, target_tensor=y)
# 將torch_dataset置入Dataloader中
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE,
shuffle=True, num_workers=2)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(1, 20)
self.predict = torch.nn.Linear(20, 1)
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
# 為每個優化器創建一個Net
net_SGD = Net()
net_Momentum = Net()
net_RMSprop = Net()
net_Adam = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]
# 初始化優化器
opt_SGD = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSprop = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
# 定義損失函數
loss_function = torch.nn.MSELoss()
losses_history = [[], [], [], []] # 記錄training時不同神經網絡的loss值
for epoch in range(EPOCH):
print('Epoch:', epoch + 1, 'Training...')
for step, (batch_x, batch_y) in enumerate(loader):
b_x = Variable(batch_x)
b_y = Variable(batch_y)
for net, opt, l_his in zip(nets, optimizers, losses_history):
output = net(b_x)
loss = loss_function(output, b_y)
opt.zero_grad()
loss.backward()
opt.step()
l_his.append(loss.data[0])
labels = ['SGD', 'Momentum', 'RMSprop', 'Adam']
for i, l_his in enumerate(losses_history):
plt.plot(l_his, label=labels[i])
plt.legend(loc='best')
plt.xlabel('Steps')
plt.ylabel('Loss')
plt.ylim((0, 0.2))
plt.show()實驗結果:

由實驗結果可見,SGD的優化效果是最差的,速度很慢;作為SGD的改良版本,Momentum表現就好許多;相比RMSprop和Adam的優化速度就非常好。實驗中,針對不同的優化問題,比較各個優化器的效果再來決定使用哪個。
三、其他補充
1. Python的zip函數
zip函數接受任意多個(包括0個和1個)序列作為參數,返回一個tuple列表。
x = [1, 2, 3] y = [4, 5, 6] z = [7, 8, 9] xyz = zip(x, y, z) print xyz [(1, 4, 7), (2, 5, 8), (3, 6, 9)] x = [1, 2, 3] x = zip(x) print x [(1,), (2,), (3,)] x = [1, 2, 3] y = [4, 5, 6, 7] xy = zip(x, y) print xy [(1, 4), (2, 5), (3, 6)]
感謝各位的閱讀!關于“PyTorch批訓練及優化器的示例分析”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,讓大家可以學到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。