溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python實現最小二乘法線性擬合

發布時間:2020-09-24 12:59:03 來源:腳本之家 閱讀:262 作者:王勇21633012 欄目:開發技術

本文python代碼實現的是最小二乘法線性擬合,并且包含自己造的輪子與別人造的輪子的結果比較。

問題:對直線附近的帶有噪聲的數據進行線性擬合,最終求出w,b的估計值。

最小二乘法基本思想是使得樣本方差最小。

代碼中self_func()函數為自定義擬合函數,skl_func()為調用scikit-learn中線性模塊的函數。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
 
n = 101
 
x = np.linspace(0,10,n)
noise = np.random.randn(n)
y = 2.5 * x + 0.8 + 2.0 * noise
 
def self_func(steps=100, alpha=0.01):
  w = 0.5
  b = 0
  alpha = 0.01
  for i in range(steps):
    y_hat = w*x + b
    dy = 2.0*(y_hat - y)
    dw = dy*x
    db = dy
    w = w - alpha*np.sum(dw)/n
    b = b - alpha*np.sum(db)/n
    e = np.sum((y_hat-y)**2)/n
    #print (i,'W=',w,'\tb=',b,'\te=',e)
  print ('self_func:\tW =',w,'\n\tb =',b)
  plt.scatter(x,y)
  plt.plot(np.arange(0,10,1), w*np.arange(0,10,1) + b, color = 'r', marker = 'o', label = 'self_func(steps='+str(steps)+', alpha='+str(alpha)+')')
 
def skl_func():
  lr = LinearRegression()
  lr.fit(x.reshape(-1,1),y)
  y_hat = lr.predict(np.arange(0,10,0.75).reshape(-1,1))
  print('skl_fun:\tW = %f\n\tb = %f'%(lr.coef_,lr.intercept_))
  plt.plot(np.arange(0,10,0.75), y_hat, color = 'g', marker = 'x', label = 'skl_func')
  
self_func(10000)
skl_func()
plt.legend(loc='upper left')
plt.show()

結果:

self_func:  W = 2.5648753825503197     b = 0.24527830841237772
skl_fun:     W = 2.564875                             b = 0.245278

python實現最小二乘法線性擬合

以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持億速云。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

亚洲午夜精品一区二区_中文无码日韩欧免_久久香蕉精品视频_欧美主播一区二区三区美女