在Linux環境下,C++多線程同步主要有以下幾種方法:
std::mutex
類來實現互斥鎖。#include <iostream>
#include <mutex>
#include <thread>
std::mutex mtx;
void print_block(int n, char c) {
mtx.lock();
for (int i = 0; i < n; ++i) {
std::cout << c;
}
std::cout << '\n';
mtx.unlock();
}
int main() {
std::thread th1(print_block, 50, '*');
std::thread th2(print_block, 50, '$');
th1.join();
th2.join();
return 0;
}
std::recursive_mutex
類來實現遞歸互斥鎖。#include <iostream>
#include <mutex>
#include <thread>
std::recursive_mutex mtx;
void foo() {
mtx.lock();
std::cout << "foo\n";
mtx.lock(); // 同一個線程可以再次鎖定遞歸互斥鎖
std::cout << "foo again\n";
mtx.unlock();
mtx.unlock();
}
int main() {
std::thread t(foo);
t.join();
return 0;
}
std::condition_variable
類來實現條件變量。#include <iostream>
#include <mutex>
#include <condition_variable>
#include <thread>
std::mutex mtx;
std::condition_variable cv;
bool ready = false;
void print_id(int id) {
std::unique_lock<std::mutex> lck(mtx);
cv.wait(lck, []{return ready;}); // 等待條件滿足
std::cout << "thread " << id << '\n';
}
void go() {
std::unique_lock<std::mutex> lck(mtx);
ready = true;
cv.notify_all(); // 喚醒所有等待的線程
}
int main() {
std::thread threads[10];
for (int i = 0; i < 10; ++i) {
threads[i] = std::thread(print_id, i);
}
std::this_thread::sleep_for(std::chrono::seconds(1));
go();
for (auto &th : threads) {
th.join();
}
return 0;
}
std::shared_mutex
類來實現讀寫鎖。#include <iostream>
#include <shared_mutex>
#include <thread>
std::shared_mutex rw_mtx;
void read_data(int id) {
std::shared_lock<std::shared_mutex> lck(rw_mtx);
std::cout << "reader " << id << '\n';
}
void write_data(int id) {
std::unique_lock<std::shared_mutex> lck(rw_mtx);
std::cout << "writer " << id << '\n';
}
int main() {
std::thread readers[5], writers[5];
for (int i = 0; i < 5; ++i) {
readers[i] = std::thread(read_data, i);
writers[i] = std::thread(write_data, i);
}
for (auto &th : readers) {
th.join();
}
for (auto &th : writers) {
th.join();
}
return 0;
}
這些同步方法可以幫助你在Linux環境下實現C++多線程同步。在實際應用中,你需要根據具體需求選擇合適的同步方法。