在Linux中,有多種方法可以實現進程間通信(IPC)。以下是一些常用的IPC機制:
管道(Pipes):
信號(Signals):
消息隊列(Message Queues):
共享內存(Shared Memory):
信號量(Semaphores):
套接字(Sockets):
下面是一些簡單的示例代碼,展示了如何在Linux中使用這些IPC機制:
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <iostream>
int main() {
int pipefd[2];
pid_t pid;
char buffer[256];
// 創建管道
if (pipe(pipefd) == -1) {
perror("pipe");
exit(EXIT_FAILURE);
}
// 創建子進程
pid = fork();
if (pid == -1) {
perror("fork");
exit(EXIT_FAILURE);
}
if (pid > 0) { // 父進程
close(pipefd[0]); // 關閉讀端
const char* message = "Hello from parent!";
write(pipefd[1], message, strlen(message) + 1); // 寫入數據
close(pipefd[1]); // 關閉寫端
wait(NULL); // 等待子進程結束
} else { // 子進程
close(pipefd[1]); // 關閉寫端
read(pipefd[0], buffer, sizeof(buffer)); // 讀取數據
std::cout << "Child received: " << buffer << std::endl;
close(pipefd[0]); // 關閉讀端
}
return 0;
}
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <iostream>
int main() {
const char* fifo = "/tmp/myfifo";
mkfifo(fifo, 0666);
int fd = open(fifo, O_RDWR);
if (fd == -1) {
perror("open");
exit(EXIT_FAILURE);
}
const char* message = "Hello from FIFO!";
write(fd, message, strlen(message) + 1);
char buffer[256];
read(fd, buffer, sizeof(buffer));
std::cout << "Received: " << buffer << std::endl;
close(fd);
unlink(fifo);
return 0;
}
#include <sys/ipc.h>
#include <sys/shm.h>
#include <iostream>
#include <cstring>
int main() {
key_t key = ftok("shmfile", 65);
int shmid = shmget(key, 1024, 0666|IPC_CREAT);
char *str = (char*) shmat(shmid, (void*)0, 0);
strcpy(str, "Hello shared memory!");
std::cout << "String in memory: " << str << std::endl;
shmdt(str);
shmctl(shmid, IPC_RMID, NULL);
return 0;
}
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <iostream>
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
};
int main() {
key_t key = ftok("semfile", 65);
int semid = semget(key, 1, 0666|IPC_CREAT);
union semun arg;
arg.val = 1; // 初始化信號量為1
semctl(semid, 0, SETVAL, arg);
// 使用信號量進行P操作(等待)
struct sembuf sb = {0, -1, SEM_UNDO};
semop(semid, &sb, 1);
std::cout << "Semaphore value after P operation: " << semctl(semid, 0, GETVAL, arg) << std::endl;
// 使用信號量進行V操作(釋放)
sb.sem_op = 1;
semop(semid, &sb, 1);
semctl(semid, 0, IPC_RMID, arg);
return 0;
}
// 這是一個簡單的TCP套接字示例,包括服務器和客戶端代碼。
// 服務器端
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <iostream>
int main() {
int server_fd, new_socket;
struct sockaddr_in address;
int opt = 1;
int addrlen = sizeof(address);
char buffer[1024] = {0};
// 創建套接字文件描述符
if ((server_fd = socket(AF_INET, SOCK_STREAM, 0)) == 0) {
perror("socket failed");
exit(EXIT_FAILURE);
}
// 強制綁定
if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt))) {
perror("setsockopt");
exit(EXIT_FAILURE);
}
address.sin_family = AF_INET;
address.sin_addr.s_addr = INADDR_ANY;
address.sin_port = htons(8080);
// 綁定套接字到地址
if (bind(server_fd, (struct sockaddr *)&address, sizeof(address)) < 0) {
perror("bind failed");
exit(EXIT_FAILURE);
}
// 監聽連接
if (listen(server_fd, 3) < 0) {
perror("listen");
exit(EXIT_FAILURE);
}
// 接受連接
if ((new_socket = accept(server_fd, (struct sockaddr *)&address, (socklen_t*)&addrlen)) < 0) {
perror("accept");
exit(EXIT_FAILURE);
}
// 讀取數據
read(new_socket, buffer, 1024);
std::cout << "Message from client: " << buffer << std::endl;
// 發送響應
send(new_socket, "Hello from server", 17, 0);
std::cout << "Hello message sent\n";
close(new_socket);
close(server_fd);
return 0;
}
// 客戶端
#include <sys/socket.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <iostream>
int main() {
int sock = 0;
struct sockaddr_in serv_addr;
char *hello = "Hello from client";
char buffer[1024] = {0};
// 創建套接字文件描述符
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0) {
std::cout << "
Socket creation error
";
return -1;
}
serv_addr.sin_family = AF_INET;
serv_addr.sin_port = htons(8080);
// 將IPv4地址從文本轉換為二進制形式
if(inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr) <= 0) {
std::cout << "
Invalid address/ Address not supported
";
return -1;
}
// 連接到服務器
if (connect(sock, (struct sockaddr *)&serv_addr, sizeof(serv_addr)) < 0) {
std::cout << "
Connection Failed
";
return -1;
}
// 發送數據
send(sock, hello, strlen(hello), 0);
std::cout << "Hello message sent\n";
// 讀取響應
read(sock, buffer, 1024);
std::cout << "Message from server: " << buffer << std::endl;
close(sock);
return 0;
}
在使用這些IPC機制時,需要注意同步和互斥的問題,以避免競態條件和數據不一致。此外,還需要考慮錯誤處理和資源清理,確保程序的健壯性。