在Linux環境下使用C++進行并發編程時,鎖機制是確保多個線程安全訪問共享資源的關鍵。以下是一些常用的鎖機制及其在C++中的實現方式:
互斥鎖是最基本的同步機制,用于保護臨界區,確保同一時間只有一個線程可以訪問。
std::mutex#include <iostream>
#include <thread>
#include <mutex>
std::mutex mtx; // 全局互斥鎖
void print_block(int n, char c) {
mtx.lock(); // 加鎖
for (int i = 0; i < n; ++i) {
std::cout << c;
}
std::cout << '\n';
mtx.unlock(); // 解鎖
}
int main() {
std::thread th1(print_block, 50, '*');
std::thread th2(print_block, 50, '$');
th1.join();
th2.join();
return 0;
}
std::lock_guardstd::lock_guard是一個方便的RAII(Resource Acquisition Is Initialization)風格的鎖管理類,它在構造時加鎖,在析構時自動解鎖。
#include <iostream>
#include <thread>
#include <mutex>
std::mutex mtx;
void print_block(int n, char c) {
std::lock_guard<std::mutex> guard(mtx); // 自動加鎖和解鎖
for (int i = 0; i < n; ++i) {
std::cout << c;
}
std::cout << '\n';
}
int main() {
std::thread th1(print_block, 50, '*');
std::thread th2(print_block, 50, '$');
th1.join();
th2.join();
return 0;
}
遞歸鎖允許同一個線程多次獲取同一個鎖而不會導致死鎖。
std::recursive_mutex#include <iostream>
#include <thread>
#include <mutex>
std::recursive_mutex mtx;
void print_block(int n, char c, int count = 0) {
if (count >= 2) return; // 防止無限遞歸
mtx.lock(); // 加鎖
std::cout << "Thread " << std::this_thread::get_id() << " is printing block\n";
print_block(n, c, count + 1); // 遞歸調用
mtx.unlock(); // 解鎖
}
int main() {
std::thread th1(print_block, 50, '*');
std::thread th2(print_block, 50, '$');
th1.join();
th2.join();
return 0;
}
條件變量用于線程間的等待和通知機制。
std::condition_variable#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>
std::mutex mtx;
std::condition_variable cv;
bool ready = false;
void print_id(int id) {
std::unique_lock<std::mutex> lck(mtx);
cv.wait(lck, []{ return ready; }); // 等待條件變量
std::cout << "Thread " << id << '\n';
}
void go() {
std::lock_guard<std::mutex> lck(mtx);
ready = true;
cv.notify_all(); // 通知所有等待的線程
}
int main() {
std::thread threads[10];
for (int i = 0; i < 10; ++i) {
threads[i] = std::thread(print_id, i);
}
std::this_thread::sleep_for(std::chrono::seconds(1));
go();
for (auto& th : threads) {
th.join();
}
return 0;
}
讀寫鎖允許多個讀線程同時訪問共享資源,但寫線程訪問時會阻塞其他讀線程和寫線程。
std::shared_mutex#include <iostream>
#include <thread>
#include <shared_mutex>
std::shared_mutex rw_mtx;
int shared_data = 0;
void read_data(int id) {
std::shared_lock<std::shared_mutex> lock(rw_mtx); // 共享鎖
std::cout << "Reader " << id << " reads data: " << shared_data << '\n';
}
void write_data(int value) {
std::unique_lock<std::shared_mutex> lock(rw_mtx); // 獨占鎖
shared_data = value;
std::cout << "Writer writes data: " << shared_data << '\n';
}
int main() {
std::thread readers[5];
std::thread writer(write_data, 42);
for (int i = 0; i < 5; ++i) {
readers[i] = std::thread(read_data, i);
}
for (auto& th : readers) {
th.join();
}
writer.join();
return 0;
}
在Linux環境下使用C++進行并發編程時,合理使用鎖機制可以有效避免數據競爭和死鎖問題。C++11及以后的版本提供了豐富的同步原語,如std::mutex、std::lock_guard、std::condition_variable和std::shared_mutex,這些工具可以幫助開發者更方便地實現線程安全的代碼。